

SCHOTT is a leading international technology group in the areas of specialty glass and glass-ceramics. With more than 130 years of outstanding development, materials and technology expertise we offer a broad portfolio of high-quality products and intelligent solutions that contribute to our customers' success.
With a production capacity of more than 140,000 tons and production sites in Europe, South America and Asia, SCHOTT Tubing is one of the world's leading manufacturers of glass tubes, rods and profiles.
Approximately 60 glass types are produced in large external diameters and a variety of lengths based on site-overlapping strategies in development, production and quality assurance. SCHOTT Tubing provides customized products and services for international growth markets such as pharmaceuticals and electronics as well as industrial and environmental engineering.

Content

2	Trademark
3	Table of contents
$\mathbf{4 - 5}$	Inventor Otto Schott
$6-7$	Glass properties
$\mathbf{8}$	Range of dimensions
$\mathbf{9}$	Quality management
$\mathbf{1 0 - 1 1}$	Range of applications
$\mathbf{1 2 - 1 3}$	Service/packaging
$\mathbf{1 4}$	Logistics services
$15-17$	Processing notes
$18-25$	Tubing
26	Rods
27	Capillaries
28	Related products
29	Other glass types for technical applications
31	Annex

made by SCHOTT

The invention from Otto Schott

Versatile, highly resistant, easily processed - its many features make DURAN ${ }^{\circledR}$ glass tubing the all-round talent among all technical glasses. Invented in 1897 by Otto Schott, this 3.3 expansion glass to this day in many ways positions SCHOTT as the leader in the borosilicate glass industry, boasting uniquely varied dimensions, very tight geometric tolerances and high optical quality.

Otto Schott	1897	1938	1950	2011	2015
The inventor: Scientist and company founder	The invention: Borosilicate glass 3.3, resistant to chemicals, heat and thermal shock, was invented in 1897 by Otto Schott.	Patented: Registered for patent in 1938 under the trade name DURAN ${ }^{\text {® }}$.	Industry standard: DURAN ${ }^{\circledR}$ borosilicate glass tubing has been the standard material in the production of laboratory glass items since the 1950s.	A first: Glass tubing with a length of 10 meters! SCHOTT in Mitterteich, Germany, was the first to produce DURAN ${ }^{\circledR}$ tubing in a length of 10 meters, making it the longest industrially produced glass tube.	A first: Glass tubing with 460 mm outside diameter! SCHOTT in Mitterteich has set a world record: It manufactured DURAN® tubing with an outside diameter of 460 mm , the largest-ever industrially produced glass tubing.

Properties

High chemical
resistance

Durability in corrosive environments thanks to high chemical resistance of the material

Hydrolytic resistance	
Hydrolytic resistance (DIN ISO 719)	Class HGB 1
Acid resistance (DIN 12116)	Class S 1
Alkali resistance (DIN ISO 695)	Class A 2

DURAN ${ }^{\text {b }}$ brosilicate glass 3.3 is very resistant to water, neutral and acid solutions, strong acids and their compounds, as well a against chlorine, bromine, iodine and organic substances. Hydroflouric acid, hot phosphoric acid, and alkaline solutions attack the glass surface depending on conce tration and temperature, thus applications must be individually tested.

Outstanding transmission
properties

Ideal base material for transparent encapsulation, thanks to consistently stable transmission from UV-A into IR range

Index of refraction $(\lambda=587.6 \mathrm{~nm}) n_{d}$

Other characteristics

Density ρ at $25^{\circ} \mathrm{C}$

$2.23 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
Poisson number μ
Elasticity modulus E (Young's modulus)
$63 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm}^{-2}$
Stress-optical constant
(DIN 52 314) K
$4.0 \cdot 10^{-6} \mathrm{~mm}^{2} \cdot \mathrm{~N}^{-1}$

High thermal capacity and resistance to thermal shock

Ideal for applications in contact with fire or high temperatures due to high working temperatures and thermal shock

Temperature resistance and thermal expansion	
Coefficient of mean linear thermal expansion $\alpha\left(20^{\circ} \mathrm{C} ; 300^{\circ} \mathrm{C}\right)$ as per DIN ISO 7991	$3.3 \cdot 10^{-6} \mathrm{~K}-1$
Transformation temperature T_{9}	$525^{\circ} \mathrm{C}$
Glass temperature at viscosity η in $\mathrm{dPa} \cdot \mathrm{s}$:	
10^{13} (annealing point)	$560{ }^{\circ} \mathrm{C}$
1076 (softening point)	$825^{\circ} \mathrm{C}$
10^{4} (working point)	$1260^{\circ} \mathrm{C}$
Thermal conductivity λ_{w} at $90^{\circ} \mathrm{C}$	$1.2 \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}-1$

Good electrical properties

Excellent for high-voltage applications, thanks to its good electrical insulating characteristics with high dielectric strength

Electrical properties

Temperature for specific
electrical resistance of
$0^{8} \Omega \cdot \mathrm{~cm}($ DIN 52326$) \mathrm{t}_{\mathrm{k} 100}$
Log of the electric volume
resistivity $(\Omega \cdot \mathrm{cm})$
Dielectric properties
$1 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) dielectric constant ε dielectric constant ε
dielectric loss factor $\tan \delta$
4.6
$\cdot 10^{-4}$

Versatile in size and length

Range of dimensions

DURAN ${ }^{\circledR}$ tubing

Dimension range
[mm]

Outside diameter (OD)	3.00 to 465.00
Wall thickness (WT)	0.45 to 14.00
Length (L)	600 to 10,000

DURAN ${ }^{\circledR}$ rods

Dimension range $[\mathrm{mm}]$		
Diameter (D)	>2.00	to 42.00
Length (L)	1,200	to 3,000

DURAN ${ }^{\circledR}$ capillaries

Dimension range
[mm]
Outside diameter (OD) $\quad 4.00$ to 9.00
Inside diameter (ID) $\quad 0.40$ to 3.00
Length (L) $\quad 1,000$ to 2,000

Quality management
Ultra-modern manufacturing methods forge SCHOTT quality, 100% measured, controlled, documented, and traceable all the way back to its origin.

Certified quality
DURAN ${ }^{\circledR}$ meets all significant standards for technical glass such as ISO 3585:1998 and ASTM E438 Type I. Good Manufacturing Practice (GMP) is a guideline for production processes and production environment (ISO 15378) and is an extension of the familiar standard ISO 9001. SCHOTT in Mitterteich, Germany, is the world's first glass tubing manufacturer to be certified under the applicable European standard ISO 15378

Proven quality from SCHOTT
In addition to measuring done within the production lines, random samples are regularly taken during the production process. The in-house laboratory tests these samples chemically, physically and visually in order to verify and expand upon the automatic testing. Once the finished tubing is packaged and ready for shipment, all measuring results and packaging information is archived for any later access that may be required.

These dimensions cannot be selected in any combination of OD, WT, ID and L. Further dimensions available upon request. Requirement: successful technical feasibility test

Shorter lengths are available with post-processing upon request.

Do you know some of the many ways where DURAN ${ }^{\circledR}$ tubing is used? Here are a few examples:

Art \& design, safety and more

Product presentation: DURAN ${ }^{\ominus}$ tubing with hig
transparency and resistance toscrathes

Interior design: DURAN® tub
innovative design solutions

Giftware: DURAN ${ }^{\ominus}$ tubing as easily

Sprinkler fuses: DURAN $\begin{aligned} & \text { tubing with } \\ & \text { consistently reliable thermal expansion }\end{aligned}$

Explosion proof lighting: DURAN $\begin{aligned} & \text { tubing } \\ & \text { durability in corrosive environme }\end{aligned}$

360-degree camera: enveloping DURAN®
tubing as protection tubing as protection from scratches,

Chemical equipment:
for commercial plants

Photobioreactors: DURAN $\begin{aligned} & \text { tubing with high transmission }\end{aligned}$
Ozone generators: DURAN® tubing as insulator

Heat exchangers: DU
corrosion resistance

optimum effect and long life

The worldwide sales offices of SCHOTT Technical Tubing: International and close to customers

Europe
(1) DENMARK|LI
(2) EnGARK Lyngby
(3) ENGLAND | Stafford
(3) NETHERLANDS|Tiel
(4) GERMANY|Mitterteich

Production site
(5) FRANCE|Colombes
(6) SWITZERLAND|St. Gallen
(7) AUSTRIA | Vienna
(8) SPAIN | Barcelona
(9) ITALY/Genova
(10) CROATIA|Zagreb
(11) POLAND|Warsaw
(12) TURKEY|Istanbul
(B) RUSSIA|Moscow

Know-how and consulting

?

North America
(44) USA|EImsford, NY
(B) MEXICO | Mexico City

South America
(6) COLUMBIA|Bogotá
(17) BRASIL |ltupeva
(8) ARGENTINA | Buenos Aires

Near East
(19) ISRAEL | Tel Aviv
(20) UNITED ARAB. EMIRATES \| Dubai

Asia

(21) INDIA|Mumbai
(22) THAILAND | Bangkok
(23) SINGAPORE | Singapore
(24) JAPAN | Tokyo
(25) KOREA|Seou
(26) CHINA| Shanghai
(27) TAIWAN | Taipei
(28) AUSTRALIA | Frenchs Forest

Services

 production, processing and application of glass tubing, rods, and capillaries. Ou qualified experts have in-depth knowledge of glass and its properties and process es. We provide custom-tailored advice and services, from material selection to support for technical feasibility studies, up to product development.

Benefit from our expertise in materials,
product features and processing.

We are happy to partner up with you to product idea.

Analysis of glass defects

Lectures

Logistics services

Standard packaging solutions

Individual packaging solutions

More custom packaging is available as per individual needs and customer request.

Large carton box

Wooden box

Bulk pallet

Round-the-clock ordering

田。

all dimensions indicate
 www.schott.com/tubing/ecom

DURAN ${ }^{\text {i }}$ is easily ordered $24 / 7$ and online. Stock lists, price transparency, and anticipated delivery date are only a few of the practical functions. Comprehensive, log-in-protected functions facilitate ordering: www.schott.com/tubing/ecom

For further information and individual log-in details
call +49 (0) 9633/80-100 or contact customerservice.tubing@schott.com.

Processing notes

Strength

Glass is a brittle material.
Theoretically calculated strength is meaningless in the practical application of glass. The strength of glass is not determined by material property but rather by surface property. The surface of glass always contains microscopic defects. Packaging, transport and especially processing determine strength, because this is when microscopic to macroscopic damage occurs to the surface. The strength of glass components is thus researched experimentally and not theoretically.

Experimental tests of the strength of glass indicate the distribution of failure frequency under certain loads. Statistical assessment of this distribution allows for calculating the probability of fracture. The probability of fracture, in turn, allows for dimensioning of the glass component or assessment of its use for a specific application, if required.

The following theoretical considerations can help in laying out applications or defining operating conditions, yet do not replace practical strength tests when necessary. These must be performed on the final product and are thus the responsibility of the end-product manufacturer.

Processing notes

Compressive strength of DURAN® borosilicat glass 3.3 tubing

Thermal-shock resistance

The following formula applies to stress-free tubing and hollow cylindrical bodies with rounded profile, consistent wall thickness and open ends, free of thermal loads under positive interior and negative exterior pressure.

$$
\begin{array}{l|l}
\text { Calculating resistance to pressure }(\mathrm{p}) & \text { Calculating wall thickness (WT) } \\
\begin{array}{l|}
\mathrm{p}=\frac{\mathrm{WT} \cdot 140 \mathrm{bar}}{\mathrm{OD}-\mathrm{WT}}
\end{array} & \mathrm{WT}=\frac{\mathrm{OD} \cdot \mathrm{p}}{140 \mathrm{bar}+\mathrm{p}}
\end{array}
$$

$\mathrm{OD}=$ outside diameter in mm
 WT $=$ wall thickness in mm
 $p=$ pressure in bar

The formula stems from the AD 2000 specifications N 4 , Issue 2000-10: Pressure vessels of glass with Annex 1, Issue 2000-10: Assessment of errors in pressure vessel walls of glass and B1, Issue 000-10: Cylinder and spherical shells under excess interior pressure, whereby approved strain nder DIN EN 1595: Pressure equipment made from borosilicate glass 3.3 - General rules for esign mand $7 \mathrm{~N} / \mathrm{mm}^{2}$ wer
Under DIN EN 1595: Pressure equipment of borosilicate glass 3.3 - General rules for design, manufacture and testing, DURAN is an approved material and can be used in the
manufacture of pressure equipment.

The thermal-shock resistance of glass tubing can be estimated with, for example, a GIT publication (data and process sheets, Process sheet GIT 6 [1962] booklet 12 [Dec.]). Thermal-shock resistance
refers to the mechanical resistance of glass tubing against cracking or breaking under extreme thermal shock. The values in this publication are based on theoretical research and practical experience and should show temperature differences which the glass bodies can withstand in practice. Breakage is thereby not expected until temperature differences are 1.2 to 2 times higher.

Processing notes

The table below gives two maximum temperature differences each for some dimensions. The publication for glass tubing distinguishes between two types of temperature change.

1. Temperature change to the tubing occurs only form the outside, without direct influence on the interior atmosphere.
2. Temperature change occurs simultaneously from the outside and on the inside of the tubing. This case is less critical and represents the higher value of the table.

Tubing	Rod
OD $50.5 /$ WT $5.00 \mathrm{~mm}: 100 / 140^{\circ} \mathrm{C}$	OD $24.0 \mathrm{~mm}: 75^{\circ} \mathrm{C}$
OD $133.0 /$ WT $7.00 \mathrm{~mm}: 90 / 120^{\circ} \mathrm{C}$	
OD $120.0 /$ WT $8.00 \mathrm{~mm}: 85 / 110^{\circ} \mathrm{C}$	

The thermal-shock resistance of tubing, capillaries and rods depends on wall thickness, shape and size of the quenched surface, surface condition, existing stresses and end finish. It is recommended not to exceed a temperature difference of $120^{\circ} \mathrm{C}$.

To remove temporary stresses arising from processing, glass is heated to a maximum of $550^{\circ} \mathrm{C}$ and kept at this temperature for no more than 30 minutes, for lower thickness a fraction of this time is normally needed. For subsequent cooling the following table contains standard values for recommended cooling rate:

Wall thickness in mm	Temperature range		
	550 to $480^{\circ} \mathrm{C}$	480 to $400{ }^{\circ} \mathrm{C}$	400 to $20^{\circ} \mathrm{C}$
3	$\sim 12^{\circ} \mathrm{C} / \mathrm{min}$	$\sim 24^{\circ} \mathrm{C} / \mathrm{min}$	to $\sim 480^{\circ} \mathrm{C} / \mathrm{min}$
6	$\sim 3^{\circ} \mathrm{C} / \mathrm{min}$	$\sim 6^{\circ} \mathrm{C} / \mathrm{min}$	to $\sim 120^{\circ} \mathrm{C} / \mathrm{min}$
12	$\sim 0.8^{\circ} \mathrm{C} / \mathrm{min}$	$\sim 1.6{ }^{\circ} \mathrm{C} / \mathrm{min}$	to $\sim 32^{\circ} \mathrm{C} / \mathrm{min}$

If an item needs to be cooled several times, the sum of all relaxation times at $550^{\circ} \mathrm{C}$ should not exceed two hours.

Standard product range Tubing

Outer diameter	Wall thickness	Tube weight Length approx. $1,500 \mathrm{~mm}$	Carton contents		Pallet load	
$\overleftrightarrow{\bigcirc}$	"		8		雨	
mm	mm	9	$\begin{aligned} & \begin{array}{l} \text { Nomber } \\ \text { of tubes } \end{array} \end{aligned}$	${ }_{\text {Weight }}^{\substack{\text { approx. } \\ \text { ag }}}$	$\begin{gathered} \text { Number } \\ \text { of cartors } \end{gathered}$	${ }_{\text {Weight }}^{\substack{\text { approx. } \\ \text { apg }}}$
3 ± 0.13	0.7 ± 0.03	17	941	16.0	27	432.0
4 ± 0.13	0.8 ± 0.03	27	555	15.0	36	540.0
5 ± 0.13	0.8 ± 0.03	35	343	12.0	45	540.0
6 ± 0.13	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \end{array}$	$\begin{aligned} & 53 \\ & 71 \end{aligned}$	$\begin{aligned} & 245 \\ & 211 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 468.0 \\ & 540.0 \end{aligned}$
7 ± 0.13	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \end{array}$	$\begin{aligned} & 63 \\ & 87 \end{aligned}$	$\begin{aligned} & 190 \\ & 172 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 45 \\ & 36 \end{aligned}$	$\begin{aligned} & 540.0 \\ & 540.0 \end{aligned}$
8 ± 0.13	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \end{array}$	$\begin{array}{r} 74 \\ 102 \end{array}$	$\begin{aligned} & 149 \\ & 147 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 45 \\ & 36 \end{aligned}$	$\begin{aligned} & 495.0 \\ & 540.0 \end{aligned}$
9 ± 0.13	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \end{array}$	$\begin{array}{r} 84 \\ 118 \end{array}$	$\begin{aligned} & 119 \\ & 119 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 45 \\ & 36 \end{aligned}$	$\begin{aligned} & 450.0 \\ & 504.0 \end{aligned}$
10 ± 0.13	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \\ 2.2 & \pm 0.11 \end{array}$	$\begin{array}{r} 95 \\ 134 \\ 180 \end{array}$	$\begin{aligned} & 95 \\ & 90 \\ & 56 \end{aligned}$	$\begin{array}{r} 9.0 \\ 12.0 \\ 10.0 \end{array}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 405.0 \\ & 540.0 \\ & 450.0 \end{aligned}$
11 ± 0.16	$\begin{array}{ll} 1.0 & \pm 0.00 \\ 1.5 & \pm 0.07 \\ 2.2 & \pm 0.11 \end{array}$	$\begin{aligned} & 105 \\ & 150 \\ & 203 \end{aligned}$	$\begin{aligned} & 86 \\ & 73 \\ & 42 \end{aligned}$	$\begin{array}{r} 9.0 \\ 11.0 \\ 8.5 \end{array}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 405.0 \\ & 495.0 \\ & 382.5 \end{aligned}$
12 ± 0.16	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \\ 2.2 & \pm 0.11 \end{array}$	$\begin{aligned} & 116 \\ & 165 \\ & 226 \end{aligned}$	$\begin{array}{r} 130 \\ 67 \\ 42 \end{array}$	$\begin{array}{r} 15.0 \\ 11.0 \\ 9.5 \end{array}$	$\begin{aligned} & 35 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 525.0 \\ & 495.0 \\ & 427.5 \end{aligned}$
13 ± 0.16	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \\ 2.2 & \pm 0.11 \end{array}$	$\begin{aligned} & 126 \\ & 181 \\ & 250 \end{aligned}$	$\begin{array}{r} 119 \\ 55 \\ 36 \end{array}$	$\begin{array}{r} 15.0 \\ 10.0 \\ 9.0 \end{array}$	$\begin{aligned} & 35 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 525.0 \\ & 450.0 \\ & 405.0 \end{aligned}$
14 ± 0.16	$\begin{array}{ll} 1.0 & \pm 0.04 \\ 1.5 & \pm 0.07 \\ 2.2 & \pm 0.11 \end{array}$	$\begin{aligned} & 137 \\ & 197 \\ & 273 \end{aligned}$	$\begin{array}{r} 110 \\ 46 \\ 30 \end{array}$	$\begin{array}{r} 15.0 \\ 9.0 \\ 8.2 \end{array}$	$\begin{aligned} & 35 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 525.0 \\ & 405.0 \\ & 369.0 \end{aligned}$
15 ± 0.16	$\begin{array}{ll} 1.2 & \pm 0.05 \\ 1.8 & \pm 0.08 \\ 2.5 & \pm 0.12 \end{array}$	$\begin{aligned} & 174 \\ & 250 \\ & 328 \end{aligned}$	$\begin{aligned} & 86 \\ & 56 \\ & 25 \end{aligned}$	$\begin{array}{r} 15.0 \\ 14.0 \\ 8.2 \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & 45 \end{aligned}$	$\begin{aligned} & 525.0 \\ & 490.0 \\ & 369.0 \end{aligned}$
16 ± 0.16	$\begin{array}{ll} 1.2 & \pm 0.05 \\ 1.8 & \pm 0.08 \\ 2.5 & \pm 0.12 \end{array}$	$\begin{aligned} & 187 \\ & 268 \\ & 354 \end{aligned}$	$\begin{aligned} & 81 \\ & 49 \\ & 25 \end{aligned}$	$\begin{array}{r} 15.0 \\ 13.1 \\ 8.8 \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & 45 \end{aligned}$	$\begin{aligned} & 525.0 \\ & 458.5 \\ & 396.0 \end{aligned}$

Standard product range

Tubing

Outer diameter		Wall thickness		Tube weight Length approx. 1,500 mm	Carton contents		Pallet load	
\overleftrightarrow{O}		*			S		$\sqrt{3}$	
		m		9	$\begin{aligned} & \text { Number } \\ & \text { Of tubes } \end{aligned}$	${ }_{\text {Weight }}^{\text {approx. }}$.	Number of cartons	${ }_{\text {Weight }}^{\substack{\text { Weprox. } \\ \text { ag }}}$
17		1.2	± 0.05	199	75	15.0	35	525.0
	± 0.16	1.8	± 0.08	287	49	14.0	35	490.0
		2.5	± 0.12	381	25	9.5	45	427.5
18		1.2	± 0.05	212	66	14.0	35	490.0
	± 0.16	1.8	± 0.08	306	49	15.0	35	525.0
		2.5	± 0.12	407	20	8.1	45	364.5
19		1.2	± 0.05	224	63	14.0	35	490.0
	± 0.16	1.8	± 0.08	325	42	13.7	35	479.5
		2.5	± 0.12	433	36	15.6	35	546.0
20		1.2	± 0.05	237	55	13.0	35	455.0
	± 0.23	1.8	± 0.08	344	36	12.4	35	434.0
		2.5	± 0.12	460	20	9.2	45	414.0
22		1.2	± 0.05	262	42	11.0	35	385.0
	± 0.23	1.8	± 0.08	382	30	11.5	35	402.5
		2.5	± 0.12	512	30	15.4	35	539.0
24		1.2	± 0.05	287	36	10.3	35	360.5
	± 0.23	1.8	± 0.08	420	25	10.5	35	367.5
		2.5	± 0.12	565	25	14.0	45	490.0
26		1.4	± 0.05	362	30	10.9	35	381.5
	± 0.24	2.0	± 0.09	504	25	12.6	35	441.0
		2.8	± 0.14	682	20	13.6	35	476.0
28		1.4	± 0.05	391	25	9.8	35	343.0
	± 0.24	2.0	± 0.09	546	20	11.0	35	385.0
		2.8	± 0.14	741	20	14.8	35	518.0
30		1.4	± 0.07	421	36	15.2	20	304.0
	± 0.30	2.0	± 0.09	588	16	9.4	35	329.0
		2.8	± 0.14	800	16	12.8	35	448.0
32		1.4	± 0.07	450	25	11.3	20	226.0
	± 0.30	2.0	± 0.09	630	16	10.1	35	353.5
		2.8	± 0.14	859	16	13.8	35	483.0
33	± 0.30	2.0	± 0.09	651	25	16.2	20	324.0
34	± 0.30	1.4	± 0.07	479	25	12.1	20	242.0
		2.0	± 0.09	672	16	10.8	35	378.0
			± 0.14	918	16	14.8	35	518.0

Standard product range Tubing

Outer diameter		Wall thickness		Tube weight Length approx. $1,500 \mathrm{~mm}$	Carton contents		Pallet load			
$\overleftrightarrow{\bigcirc}$		\bigcirc			8		曲			
		g	$\begin{aligned} & \text { Number } \\ & \text { of tubes } \end{aligned}$	Weight approx. kg	Number of cartons	${ }_{\substack{\text { Weight } \\ \text { appox. } \\ \text { kg }}}$				
36	± 0.35			1.4	± 0.07	509	25	12.6	20	252.0
		2.0	± 0.09	714	25	18.0	20	360.0		
		2.8	± 0.14	976	12	11.7	35	409.5		
38	± 0.35	1.4	± 0.07	538	20	10.8	20	216.0		
		2.0	± 0.09	756	20	15.0	20	300.0		
		2.8	± 0.14	1035	9	9.4	35	329.0		
40	± 0.50	1.6	± 0.08	645	16	10.2	20	204.0		
		2.3	± 0.11	911	16	14.6	20	292.0		
		3.2	± 0.18	1237	9	11.2	35	392.0		
		5.0	± 0.30	1838	9	16.5	28	462.0		
42	± 0.50	1.6	± 0.08	679	16	10.9	20	218.0		
		2.3	± 0.11	959	16	15.3	20	306.0		
		3.2	± 0.18	1304	9	11.7	35	409.5		
44	± 0.50	1.6	± 0.08	713	16	11.4	20	228.0		
		2.3	± 0.11	1007	16	16.0	20	320.0		
		3.2	± 0.18	1371	9	12.4	35	434.0		
45	± 0.60	5.0	± 0.30	2101	9	18.9	28	529.2		
46	± 0.60	1.6	± 0.08	746	16	11.9	20	238.0		
		2.3	± 0.11	1056	9	9.5	35	332.5		
		3.2	± 0.18	1439	9	13.0	35	455.0		
48	± 0.60	1.6	± 0.08	780	16	12.4	20	248.0		
		2.3	± 0.11	1104	16	17.6	20	352.0		
		3.2	± 0.18	1506	6	9.0	35	315.0		
50	± 0.65	1.8	± 0.11	911	12	10.9	20	218.0		
		2.5	± 0.14	1247	12	15.0	20	300.0		
		3.5	± 0.22	1709	12	20.5	20	410.0		
		5.0	± 0.30	2363	6	14.1	35	493.5		
		7.0	± 0.45	3161	6	19.0	28	532.0		
		9.0	± 0.60	3876	6	23.2	21	487.2		
52	± 0.65	1.8	± 0.11	949	9	8.5	20	170.0		
		2.5	± 0.14	1300	9	11.7	20	234.0		
		3.5	± 0.22	1783	9	16.0	20	320.0		
54	± 0.65	1.8	± 0.11	987	9	8.9	20	178.0		
		2.5	± 0.14	1352	9	12.2	20	244.0		
		3.5	± 0.22	1856	9	16.7	20	334.0		
55	± 0.65	5.0	± 0.30	2626	4	10.5	35	367.5		

Standard product range

Tubing

Outer diameter		Wall thickness		Tube weight Length approx. 1,500 mm	Carton contents		Pallet load			
\overleftrightarrow{O}		\because			8		里			
		g	$\begin{aligned} & \text { Number } \\ & \text { of tubes } \end{aligned}$	Weight	$\begin{aligned} & \text { Number } \\ & \text { of cartons } \end{aligned}$	${ }_{\substack{\text { Weight } \\ \text { appox. } \\ \text { kg }}}$				
56	± 0.65			1.8	± 0.11	1025	9	9.2	20	184.0
		2.5	± 0.14	1405	9	12.6	20	252.0		
		3.5	± 0.22	1930	9	17.5	20	350.0		
58	± 0.65	1.8	± 0.11	1063	9	9.6	20	192.0		
		2.5	± 0.14	1457	9	13.1	20	262.0		
		3.5	± 0.22	2004	9	18.0	20	360.0		
60	± 0.75	2.2	± 0.16	1336	9	12.0	20	240.0		
		3.2	± 0.18	1910	9	17.2	20	344.0		
		4.2	± 0.25	2462	4	9.8	35	343.0		
		5.0	± 0.30	2888	4	11.5	35	402.5		
		7.0	± 0.45	3897	4	15.6	35	546.0		
		9.0	± 0.60	4821	4	19.3	28	540.4		
65	± 0.75	2.2	± 0.16	1451	8	11.7	20	234.0		
		3.2	± 0.18	2077	4	8.3	35	290.5		
		4.2	± 0.25	2682	4	10.7	35	374.5		
		5.0	± 0.30	3151	4	12.6	35	441.0		
70	± 0.85	2.2	± 0.16	1567	8	12.5	15	187.5		
		3.2	± 0.18	2245	4	9.0	35	315.0		
		4.2	± 0.25	2903	4	11.6	35	406.0		
		5.0	± 0.30	3414	4	13.6	35	476.0		
		7.0	± 0.45	4632	4	18.5	35	647.5		
		9.0	± 0.60	5766	4	23.1	21	485.1		
75	± 0.85	2.2	± 0.16	1682	8	13.5	15	202.5		
		3.2	± 0.18	2413		9.7	20	194.0		
		4.2	± 0.25	3123	4	12.5	20	250.0		
		5.0	± 0.30	3676	4	14.7	20	294.0		
80	± 1.10	2.5	± 0.16	2035	4	8.2	20	164.0		
		3.5	± 0.22	2812	4	11.3	20	226.0		
		5.0	± 0.35	3939	4	15.8	20	316.0		
		9.0	± 0.65	6712	4	26.8	20	536.0		
85	± 1.10	2.5	± 0.16	2166	4	8.7	20	174.0		
		3.5	± 0.22	2996	4	12.0	20	240.0		
		5.0	± 0.35	4201	4	16.8	20	336.0		

Standard product range Tubing

Outer diameter	Wall thickness		Tube weight Length approx. $1,500 \mathrm{~mm}$	Carton contents		Pallet load	
\overleftrightarrow{m}	*			8		田	
			g	$\begin{aligned} & \text { Number } \\ & \text { of tubes } \end{aligned}$	Weight approx. kg	Number Of catons	${ }_{\text {Weight }}^{\substack{\text { approx. kg }}}$
90 ± 1.10	2.5	± 0.16	2298	4	9.2	20	184.0
	3.5	± 0.22	3180	4	12.7	20	254.0
	5.0	± 0.35	4464	4	17.9	20	358.0
	7.0	± 0.45	6102	3	18.3	15	274.5
	9.0	± 0.65	7657	3	23.0	15	345.0
95 ± 1.30	2.5	± 0.16	2429	4	9.7	20	194.0
	3.5	± 0.22	3364	4	13.4	20	268.0
	5.0	± 0.35	4726	4	18.9	20	378.0
100 ± 1.30	2.5	± 0.16	2560	4	10.3	20	206.0
	3.0	± 0.18	3056	4	12.1	9	108.9
	3.5	± 0.22	3547	3	10.7	12	128.4
	5.0	± 0.35	4989	3	15.0	12	180.0
	7.0	± 0.45	6838	3	20.5	12	246.0
	9.0	± 0.65	8602	3	25.8	12	309.6
± 1.40	3.0	± 0.18	3214	3	9.6	12	115.2
	5.0	± 0.40	5252	3	15.8	12	189.6
± 1.40	3.0	± 0.25	3372	3	10.1	12	121.2
	5.0	± 0.45	5514	3	16.5	12	198.0
	7.0	± 0.60	7573	3	22.7	12	272.4
± 1.40	3.0	± 0.25	3529	4	14.1	9	126.9
	5.0	± 0.45	5777	2	11.6	15	174.0
	7.0	± 0.60	7940	2	15.9	15	238.5
± 1.40	3.0	± 0.25	3687	4	14.7	9	132.3
	5.0	± 0.45	6 8 8398	2	12.1	15	181.5
		± 0.60	8308	2	16.6	15	249.0
	9.0	± 0.80	10493	2	21.0	15	315.0
± 1.40	5.0	± 0.45	6302 10965	2	12.6 21.9	15 15	189.0 328.5
	3.0	± 0.25	4002	4	16.0	9	144.0
± 1.50	5.0	± 0.45	6565	2	13.1	15	196.5
	7.0	± 0.60	9043	2	18.1	15	271.5
	9.0	± 0.80	11438	2	22.9	15	343.5
± 1.50	5.0	± 0.45	6827	2	13.7	15	205.5
	7.0	± 0.60	9411	2	18.8	15	282.0
140 ± 1.60	3.0	± 0.25	4317	4	17.3	9	155.7
	5.0	± 0.45	7090	2	14.2	15	213.0
		± 0.60	9779	2	19.6	15	294.0

Standard product range
Tubing

Outer diameter		Wall thickness		Tube weight Length approx. $1,500 \mathrm{~mm}$	Carton contents		Pallet load			
\overleftrightarrow{O}		0 mm			8		里			
		9	$\begin{aligned} & \text { Number } \\ & \text { of tubes } \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & \text { approx. } \end{aligned}$	Number of cartons	${ }_{\substack{\text { Weight } \\ \text { approx.kg }}}$				
145	± 1.60			5.0	± 0.45	7352	2	14.7	15	220.5
150	± 1.70	3.0 3.0 7.0 9.0	$\begin{aligned} & \pm 0.25 \\ & \pm 0.45 \\ & \pm 0.60 \\ & \pm 0.80 \end{aligned}$	$\begin{array}{r} 4632 \\ 7615 \\ 10514 \\ 13329 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 9.3 \\ 15.2 \\ 21.0 \\ 26.7 \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1111.6 \\ & 182.4 \\ & 252.0 \\ & 320.4 \end{aligned}$		
155	± 1.75	5.0	± 0.45	7877	2	15.8	12	189.6		
160	± 1.75	5.0 7.0	$\begin{aligned} & \pm 0.45 \\ & \pm 0.70 \end{aligned}$	$\begin{array}{r} 8140 \\ 11249 \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 195.6 \\ & 270.0 \end{aligned}$		
165	± 1.75	5.0 7.0	$\begin{aligned} & \pm 0.45 \\ & \pm 0.70 \end{aligned}$	$\begin{array}{r} 8403 \\ 11617 \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 16.8 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 201.6 \\ & 278.4 \end{aligned}$		
170	± 1.75	5.0 7.0 9.0	$\begin{aligned} & \pm 0.45 \\ & \pm 0.70 \\ & \pm 0.90 \end{aligned}$	$\begin{array}{r} 8665 \\ 11984 \\ 15219 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 24.0 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 20 \end{aligned}$	$\begin{aligned} & 207.6 \\ & 288.0 \\ & 304.0 \end{aligned}$		
180	± 1.95	5.0 7.0 9.0	$\begin{aligned} & \pm 0.45 \\ & \pm 0.70 \\ & \pm 0.90 \end{aligned}$	$\begin{array}{r} 9190 \\ 12720 \\ 16165 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 9.2 \\ 12.7 \\ 16.2 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 184.0 \\ & 254.0 \\ & 324.0 \end{aligned}$		
190	± 2.05	5.0 7.0	$\begin{aligned} & \pm 0.45 \\ & \pm 0.70 \end{aligned}$	$\begin{array}{r} 9716 \\ 13455 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 9.7 \\ 13.5 \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 194.0 \\ & 270.0 \end{aligned}$		
200	± 2.30	5.0 7.0 9.0	$\begin{aligned} & \pm 0.70 \\ & \pm 0.80 \\ & \pm 1.00 \end{aligned}$	$\begin{aligned} & 10241 \\ & 14190 \\ & 18055 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 14.2 \\ & 18.1 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 204.0 \\ & 284.0 \\ & 362.0 \end{aligned}$		
215	± 2.40	5.0 7.0 9.0	$\begin{aligned} & \pm 0.70 \\ & \pm 0.80 \\ & \pm 1.00 \end{aligned}$	$\begin{aligned} & 11029 \\ & 15293 \\ & 19473 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 15.3 \\ & 19.3 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{r} 99.0 \\ 137.7 \\ 175.5 \end{array}$		
225	± 2.60	7.0 9.0	$\begin{aligned} & \pm 0.80 \\ & \pm 1.10 \end{aligned}$	$\begin{aligned} & 16028 \\ & 20418 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 20.4 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 144.0 \\ & 183.6 \end{aligned}$		
240	± 2.80	9.0	± 1.10	21836	1	21.8	9	196.2		
250	± 2.90	5.0 7.0 9.0	$\begin{aligned} & \pm 0.70 \\ & \pm 0.90 \\ & \pm 1.10 \end{aligned}$	$\begin{aligned} & 12867 \\ & 17866 \\ & 22782 \end{aligned}$	1	$\begin{aligned} & 12.9 \\ & 17.9 \\ & 22.8 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 116.1 \\ & 161.1 \\ & 205.2 \end{aligned}$		
270	± 2.90	5.0 7.0 9.0	$\begin{aligned} & \pm 0.70 \\ & \pm 0.90 \\ & \pm 1.10 \end{aligned}$	$\begin{aligned} & 13917 \\ & 19337 \\ & 24672 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 13.9 \\ & 19.3 \\ & 24.7 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 125.1 \\ & 173.7 \\ & 222.3 \end{aligned}$		

Standard product range
Tubing

Outer diameter		Wall thickness		Tube weight Length approx. $1,500 \mathrm{~mm}$	Carton contents		Pallet load			
\overleftrightarrow{O}		\bigcirc			8		四			
		9	$\begin{aligned} & \text { Number } \\ & \text { of tubes } \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & \text { approx. kg } \end{aligned}$	${ }_{\text {Number }}^{\substack{\text { of cartons }}}$	${ }_{\substack{\text { Weight } \\ \text { appox. } \\ \text { kg }}}$				
300	± 3.70			5.0	± 0.70	15492	1	15.5	9	139.5
		7.0	± 1.10	21542	1	21.5		193.5		
		9.0	± 1.40	27508	1	27.5	9	247.5		
315	± 3.80	7.0	± 1.10	22645	1	22.6	9	203.4		
			± 1.40	28926	1	28.9	9	260.1		
325	± 4.00	9.0	± 1.40	29871	1	29.9	4	119.6		
		10.0	± 1.40	33085	1	33.0	9	297.0		
350	± 4.00	5.0	± 0.80	18118	1	18.1	4	72.4		
365	± 4.50	7.0	± 1.40	26321	1	26.3	4	105.2		
400	± 5.00	6.0	± 1.50	24829	1	24.8	4	99.2		
415	± 5.00	7.0	± 1.50	29997	1	30.0	4	120.0		
420	± 5.00	9.5	± 1.50	40960	1	41.0	4	164.0		
430	± 5.00	6.0	± 1.00	26720	1	26.7	4	106.8		
440	± 5.00	7.0	± 1.00	31836	1	31.8	4	127.2		
450	± 5.00	7.0	± 1.00	32571 37140	1	32.6	4	130.4		
				37140	1	37.1	4	148.4		
460	± 5.50	8.5	± 1.20	40309	1	40.3	4	161.2		
465	± 6.00	7.0	± 1.00	33674	1	33.7	4	134.8		

Standard length: approx. 1,500 mm

Standard product range
Rod

Standard product range Capillaries

Related products

CONTURAX ${ }^{\circ}$ and CONTURAX ${ }^{\circ}$ Pro
DURAN® tubing and rods with cross-sections that have not been rounded but rather contoured are distributed under the brand names CONTURAX ${ }^{\oplus}$ and CONTURAX ${ }^{\ominus}$ Pro. The chemical and physical glass properties of these products are identical to those of DURAN ${ }^{\text {. With CONTURAX }{ }^{\circledR} \text { and CONTURAX }{ }^{\text {Pro }} \text { Pro, SCHOTT offers a }}$ comprehensive variety of shapes. We will be glad to look into the feasibility of your particular product idea and advise you to that effect.

You can find out more about CONTURAX ${ }^{\circledR}$ and CONTURAX ${ }^{\circledR}$ Pro from your SCHOTT contact person.

DURATAN ${ }^{\text {® }}$
The mechanical strength of DURAN® tubing can be noticeably improved by a hardening process. This thermally prestressed (hardened) DURAN ${ }^{\text {® }}$ is distributed under the brand name DURATAN ${ }^{\oplus}$. The typical chemical and physical features of DURAN ${ }^{\circledR}$ are entirely maintained. We will gladly provide information on standard and assess the ability to harden the dimensions you request.

Find out more about DURATAN ${ }^{\circledR}$ from your SCHOTT contact person.

DURAN® with coating
DURAN® tubing can also be coated to gain other special features. SCHOTT has developed a special anti-reflective and anti-fingerprint coating for DURAN® tubing. This oleophobic coating prevents smudging from fingerprints, while the anti-reflective properties maximize transparency, making the glass tubing almost invisible.

Find out more about DURAN ${ }^{\circledR}$ from your SCHOTT contact person.

BOROFLOAT® 33
For applications which require the flat-glass features of DURAN ${ }^{\otimes}$, SCHOTT's BOROFLOAT® 33 provides the first floated borosilicate flat glass in the world. Its planarity and one-of-a-kind quality, as well as outstanding thermal, optical, chemical and mechanical characteristics, are impressive.

Find out more about BOROFLOAT® 33 at www.schott.com/borofloat

Other glass types for technical applications

DURAN ${ }^{\text {® }}$ is a very versatile glass. In addition to its chemical resistance, transparency, high thermal endurance and high electric and dielectric insulating features, it can also be fused with metals, for example, by using intermediate glasses. Yet these basic features are not always sufficient for specific demands. For such cases, the SCHOTT portfolio of technical tubing includes specialty glasses which surpass and expand upon certain DURAN® features. The "glass tree" below illustrates these specialty glass types, arranged by their distinguishing features.

Are you interested in the technical data of a specialty glass in our portfolio? Your contact person will be glad to guide you.

Appendix

Photo credits
Companies owning the copyright of the images, and/or photographers, are listed.
OAlexander Raths/Fotolia.com: Page 10 top
OBertold Werkmann/Fotolia.com: Page 10 lower center
©juk86/Shutterstock.com: Page 4 lower center
Okasto/Fotolia.com: Page 13 lower right
OKROHNE: Page 11 upper right
OOana Szekely: Pages 4-5 top, 15 top
OQVF®: Page 11 upper left
Okasto/Fotolia.com: Page 13 lower left
OSwift Horsman Ltd, Ware, UK: Page 10 lower left
OTriplan: Page 11 lower right
Ovideostream360: Page 10 lower right
SCHOTT AG owns the copyright of the other images.

Registered product names
SCHOTT®, DURATAN®, DENSOPACK®, BOROFLOAT®, CONTURAX® and CONTURAX® Pro are registered trademarks of SCHOTT.
DURAN ${ }^{\text {® }}$ is a registered trademark of the Duran Group GmbH.

Note
Detailed information on acceptable errors, definition of errors, testing methods and testing units are available upon request.
Tighter tolerances are also available upon request.
Basis for claims are the respectively applicable "Technical Terms of Supply" or any written contractual provisions.
We reserve the right to technical modifications.

Tubing
SCHOTT AG
Erich-Schott-Straße 14
95666 Mitterteich
Germany
Phone +49 (0)9633/80-0
Fax +49 (0)9633/80-614
info.tubing@schott.com
www.schott.com/tubing

